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Abstract

Binary or graded disagree-agree responses to attitude items are often collected for the purpose

of attitude measurement. Although such data are sometimes analyzed with cumulative

measurement models, recent investigations suggest that unfolding models are more appropriate

(Roberts, 1995; Van Schuur & Kiers, 1994). Advances in item response theory (IRT) have led to

the development of several parametric unfolding models for binary data (Andrich, 1988; Andrich

& Luo, 1993; Hoijtink, 1991), but IRT models for unfolding graded responses have not been

addressed in the psychometric literature. A parametric IRT model for unfolding either binary or

graded responses was developed in this study. The model, called the graded unfolding model

(GUM), is a generalization of Andrich & Luo's (1993) hyperbolic cosine model for binary data.

A joint maximum likelihood procedure was implemented to estimate GUM parameters, and a

subsequent recovery simulation showed that reasonably accurate estimates could be obtained with

minimal data demands (e.g., as few as 100 subjects and 15 to 20 6-category items). The

applicability of the GUM to common attitude testing situations was illustrated with real data on

student attitudes toward capital punishment. Index terms: attitude measurement, graded

unfolding model, hyperbolic cosine model, ideal point process, item response theory, Liken

scale, Thurstone scale, unidimensional scaling, unfolding model.
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The use of disagree-agree responses to measure individual attitudes has a long history within

psychology. The practice can be traced to Thurstone's (1928, 1931) classic approach in which

individuals provide binary disagree-agree responses to a set of pre-scaled attitude statements, and

then the responses are used to develop estimates of each individual's attitude. Use of disagree-

agree responses has been bolstered further by the popularity of Likert's (1932) attitude

measurement procedure in which individuals respond to a set of attitude items using a graded

scale of agreement (e.g., "strongly disagree", "disagree", "agree", "strongly agree"), and the

polytomous responses are subsequently used to develop a summated attitude score for each

person.

Methods used to analyze disagree-agree responses' to attitude items are generally consistent

with one of two perspectives of the response process. The first perspective suggests that

disagree-agree responses result from an ideal point process (Coombs, 1964) in which an

individual agrees with an attitude item to the extent that the item content satisfactorily represents

the individual's own opinion. From this viewpoint, disagree-agree responses are best analyzed

with some type of unfolding model that implements a single-peaked response function.

Thurstone's (1928, 1931) attitude measurement procedure is an example of the ideal point

perspective in that individual's are assumed to have attitudes that are similar to the items they

endorse. More contemporary examples include parametric item response models such as the

The term "disagree-agree responses" is used here in a generic sense which encompasses
both binary (e.g. "disagree" and "agree") responses and graded (e.g., "strongly disagree",
"disagree", "agree", "strongly agree") responses. The number of response categories associated
with a disagree-agree response should be determined from the context in which the term is used
unless such information is explicitly stated in the text.

6



The Graded Unfolding Model 4

squared simple logistic model (Andrich, 1988), the PARELLA model (Hoijtink, 1990, 1991), and

the hyperbolic cosine model (Andrich & Luo, 1993). Nonparametric item response models have

also been proposed for data that result from an ideal point response process (Cliff, Collins, Zatkin,

Gallipeau & McCormick, 1988; van Schuur, 1984), but these nonparametric models do not yield

measures which are invariant to either the items or the persons sampled in a particular application.

The parametric item response models, in contrast, can yield invariant measures provided that the

model in question is appropriate for the data (Hoijtink, 1990).

A second_ perspective implies that disagree-agree responses are the result of a dominance

process (Coombs, 1964) in which an individual agrees with a positively worded attitude statement

to the extent that the individual's own opinion is more positive than the sentiment expressed in the

statement. (Conversely, an individual agrees with a negatively worded statement to extent that

the individual's opinion is more negative than the sentiment reflected by the statement.)

According to this viewpoint, disagree-agree responses are best analyzed by some type of

cumulative model that implements a monotonic response function. The Likert (1932) and

Guttman (1950) approaches to attitude measurement illustrate classical techniques that are

consistent with the dominance perspective. The application of cumulative item response models

[e.g., the one-parameter (Rasch, 1960), two-parameter (Birnbaum, 1968) and three-parameter

(Lord, 1980) logistic models, the graded response model (Samejima, 1969), the rating scale

model (Andrich, 1978), the partial credit model (Masters, 1982), and the generalized partial credit

model (Muraki, 1992)] to disagree-agree responses provides a more contemporary illustration of

the dominance perspective.

Several researchers have recently argued that disagree-agree responses are generally more

7
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consistent with an ideal point perspective rather than a dominance perspective (Roberts, 1995;

Roberts, Laughlin & Wedell, 1996; van Schuur & Kiers, 1994). This argument implies that

attitude measures based on disagree-agree responses are more appropriately developed from

unfolding models rather than cumulative models. Moreover, Roberts (1995) has shown that

cumulative models can yield attitude measures which are nonmonotonically related to the latent

trait when such models are applied to responses from an ideal point process. Specifically,

individuals with the most extreme attitudes may receive scores that are indicative of more

moderate attitudinal positions.

Although unfolding models appear most appropriate for disagree-agree data, the application of

unfolding item response models to attitude measurement remains somewhat problematic because

such models allow only for binary disagree-agree responses. Some researchers, however, have

documented gains in precision when polytomous responses, as opposed to binary responses, are

used to derive measurements from cumulative item response models (Bock, 1972; Donoghue,

1994; Thissen, 1976), and Roberts (1995) has suggested that similar benefits can be achieved with

polytomous unfolding models. Furthermore, psychologists often collect graded responses to

attitude statements in the traditional Likert (1932) fashion, and these practitioners would be

forced to dichotomize their data and risk losing valuable information before using any of the

contemporary unfolding item response models. What is needed is an unfolding item response

model that incorporates a graded scale of agreement (i.e., graded disagree-agree responses).

In the following pages, an unfolding item response model is proposed for disagree-agree

responses that result from either a binary or graded scale. The model, referred to as the graded

unfolding model (GUM), is a generalization of Andrich and Luo's (1993) hyperbolic cosinemodel
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for binary data. The GUM incorporates a single peaked response function, and therefore, it is

applicable in situations where responses are presumably generated from an ideal point process.

Additionally, because the GUM allows for graded responses, there is no need to dichotomize

polytomous data prior to estimating model parameters, and thus, there is no corresponding loss in

the precision of person estimates.

The Graded Unfolding Model (GUM)

The GUM is developed from a series of five basic premises about the response process. The

first premise is that when an individual is asked to express his or her agreement with an attitude

statement, then the individual tends to agree with the item to the extent that it is located close to

his or her own position on a unidimensional latent attitude continuum. In this context, the degree

to which the sentiment of an item reflects the opinion of an individual is given by the proximity of

the individual to the item on the attitude continuum. If we let 8; denote the position of the ith

item on the continuum and let 6. denote the location of the nth individual on the continuum, then

the individual is more likely to agree with the item to the extent that the distance between On and

8; approaches zero. This is simply a restatement of the fundamental characteristic of an ideal

point process (Coombs, 1964).

A second premise of the GUM is that an individual may respond in a given response category

for either of two distinct reasons. As an example, consider an individual with a neutral attitude

toward capital punishment. This individual might strongly disagree with an item that portrays the

practice of capital punishment in either a very negative or very positive way. If the item is located

far below the individual's position on the attitude continuum (i.e., the item's content is much more
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negative than the individual's attitude), then we would say that the individual "strongly disagrees

from above" the item. In contrast, if the item is located far above the individual's position (i.e.,

the item's content is much more positive than the individual's attitude), then we would say that

the individual "strongly disagrees from below" the item. Hence, there are two possible

subjective responses, "strongly disagree from above" and "strongly disagree from below",

associated with the single observable response of "strongly disagree". Similarly, the GUM

postulates two subjective responses for each observable response on a rating scale.

The third premise behind the GUM is that subjective responses to attitude statements follow a

cumulative item response model (e.g., Andrich & Luo, 1993). In this paper, we will assume that

subjective responses follow Andrich's (1978) rating scale model, but other cumulative models

could also be used.' The rating scale model for subjective responses can be defined as:

Pr[Yi= y le ]

where:

exp[y(en-81) E zj

Atf [ exp[w(en-8, ) E
w.0 J.0

= a subjective response to attitude statement i;

y = 0, 1, 2, ...., M; y = 0 corresponds to the strongest level of

disagreement from below the item whereas y =M corresponds to the strongest

level of disagreement from above the item (see Figure 1),

2 The rating scale model seemed particularly appropriate given that the same response
scale is typically used for all items on a traditional Likert or Thurstone attitude questionnaire.

(1)
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6 = the location of individual n on the attitude continuum,

S. = the location of attitude statement i on the attitude continuum,

Ti = the relative location of the jth subjective response category threshold on the

attitude continuum (relative to a given item),

M= the number of subjective response categories minus 1.

The notation used on the left side of equation 1 implicitly conditions on the item parameters 8, and

The model is illustrated in Figure 1 for a hypothetical item with four observable response

categories: "strongly disagree", "disagree", "agree", "strongly agree". The abscissa of Figure 1

represents the attitude continuum, and it is scaled in units of signed distance between an

individual's attitude position and the location of the item (i.e., 6 - 8). The ordinate indexes the

probability that an individual's subjective response will fall in one of the 8 possible subjective

response categories. (There are 8 subjective response categories and associated probability

curves due to the fact that an individual may respond in any of the 4 observable response

categories because his or her attitudinal position is either above or below the location of the item.)

The 7 vertical lines designate the locations where successive subjective response category

probability curves intersect. These locations are the subjective response category thresholds. In

this example, the 7 subjective response category thresholds are successively ordered on the latent

continuum. Therefore, these thresholds divide the latent continuum into 8 intervals in which a

different subjective response is most likely. The most likely subjective response within each

interval is labeled in the figure.

Insert Figure 1 About Here
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Equation 1 defines an item response model at a subjective response level. However, the model

must ultimately be defined in terms of the observable response categories associated with the

graded agreement scale. Recall that each observable response category is associated with two

possible subjective responses (i.e., one from below the item and one from above the item).

Moreover, the two subjective responses corresponding to a given observable response category

are mutually exclusive. Therefore, the probability that an individual will respond using a

particular observable category is simply the sum of the probabilities associated with the two

corresponding subjective responses:

Pr[Z, = z I en ] = Pr[Y, = z I en ] + Pr[Yi = (M-z) (2)

where:

= an observable response to attitude statement i,

z = 0, 1, 2, ..., C ; z = 0 corresponds to the strongest level of disagreement and z = C

refers to the strongest level of agreement,

C = the number of observable response categories minus 1. Note that M= 2*C +1.

The fourth premise underlying the GUM is that subjective responses are locally independent

across multiple items. Therefore, subjective responses are presumed to be uncorrelated at a fixed

ability level. This premise also implies that observable responses are locally independent due to

the relationship between observable and subjective responses.

The fifth and final premise behind the GUM is that subjective category thresholds are symmetric

about the point (en - 8i) = 0, which implies that ti = -Tod- z for all z # 0 and .c(c = O. At a

conceptual level, this premise suggests that an individual is just as likely to agree with an item
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located at either -x units or +x units from the individual's position on the attitude continuum. At

an analytical level, this premise leads to the following identity:

M-z

Et =ETJ J
j=0 jr0

Incorporating this identity into equation 2 yields the formal definition of the GUM:

Pr[Zi= z I en ]

exp[z(en-81) E ]+exp[(M-z)(0n-8i) E T.,
i.0 J.°

exp[w(On-8,) E ]+exp[(M-w)(On-8,) E

Note that the parameterization used in equation 4 requires only a single constraint on item

parameter values:

Es; =0
=1

along with the notational definition that ; equals zero.'

Insert Figure 2 About Here

(3)

(4)

(5)

The GUM defines the observable response category probability curves associated with the nth

individual's objective response to the ith item. Figure 2 displays these probability curves for the

same hypothetical item referenced in Figure 1. As seen in Figure 2, there is one probability curve

3 The value of; could arbitrarily be set equal to any constant without affecting any of the
probabilities defined by Equation 4 (Muraki, 1992).
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associated with each observable response available to the individual. Each of these probability

curves is simply the sum of the two corresponding subjective response category probability curves

previously shown in Figure 1. One should note that successive observable response category

probability curves do not intersect at t1, T2, tc, and therefore, the tj parameters lose their

simple interpretation at the observable score level. In contrast, the substantive meaning of both en

and 8; remains unchanged when moving from a subjective score level to an observable score level.

Insert Figure 3 About Here

The GUM is an unfolding model of the response process. This is easily seen by computing the

expected value of an observable response for various values of en - 8; using the probability

function given in equation 4. Figure 3 portrays the expected value of an observable response for

the same hypothetical item with 4 response categories. The categories are coded with the

integers 0 to 3 where the codes correspond to the responses of "strongly disagree", "disagree",

"agree" and "strongly agree", respectively. As seen in Figure 3, the item elicits greater levels of

agreement as the distance between the individual and the item on the attitude continuum

decreases.

Parameter Estimation

In this study, the characteristics of a joint maximum likelihood approach to parameter

estimation will be described. This approach is based heavily on the (unconditional) procedures

described by Andrich (1978), Masters (1982) and Wright and Masters (1982). Assuming that

responses are independent across subjects and that the responses from any one subject are locally

independent, then the likelihood function for the GUM may be written as:

14
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(6)

where Xn; is the nth individual's observed response to item i. The goal of the maximum likelihood

procedure is to find the values of en, 8; , and ti that maximize the probability of obtaining the

observed data, and hence, the values that maximize equation 6. In practice, the natural logarithm

of likelihood equation is maximized instead of the likelihood function itself. The log-likelihood

function is equal to:

N

ln(L) = E E (-E ) (exp[Xn i(en + exp[(M-X )(On i)])
n=1 i=1 j=0

ln((exp[-i T./ ])(exp[w(en + exp[(M-w)(On Si)] ) 1.
w=o j=o

(7)

In our approach, the parameter values that maximize the log-likelihood function are determined in

an iterative fashion following the logic of Wright and Masters (1982). First, the value of t1 that

maximizes the log-likelihood function is determined while treating all other parameters as

constants. This maximization process is subsequently repeated for each of the remaining ti

parameters. The log-likelihood function is then maximized with respect to each of the 8;

parameters in succession, after which, the location constraint in equation 5 is imposed. Finally,

the log-likelihood function is maximized with regard to each of the On parameters. Maximizing

the log-likelihood function with respect to every parameter constitutes one maximization cycle

within the iterative procedure. Maximization cycles are repeatedly performed until the average

change in 8; and ti parameters is less than some arbitrarily small value (e.g., .005).
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Within any cycle, maximization of the log-likelihood function with respect to a given

parameter, 0, is accomplished through the Newton-Raphson algorithm. The Newton-Raphson

algorithm finds the value of Co at which the partial derivative of the log-likelihood function with

respect to 0 is zero. This root is determined iteratively, such that the value of 0 at iteration q+ 1

is equal to:

()In(L)

ao
oq

+ 1
= (1)q.

a21*)
4:34)2 16,

q
(8)

Thus, the first and second order partial derivatives of the log-likelihood function with respect to 0

are required in order to estimate GUM parameters. These partial derivatives are more easily

computed if we rewrite the log-likelihood function as:

ln(L) = Ux (z.) + In( exp[Xn ;(en 81)] + expRM-Xn 8i)])
n=1 1=1 j=0

(exp[-i Uw1 (ti) l ) (exp[w(On Si)] + exp[(M-w)(en Si)] )
w=o j=o

(9)

where and Uwj are dummy variables that are equal to 1 when j < Xm or j < w,

respectively, and are equal to 0 otherwise. The first order partial derivative with respect to en

is then:



ni(Xni) + cni(M-X,)

bni + cni
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CC

Ii d (e w + fw ,(M-w))
w=o

{bn,(Xni) + cni(M-Xi)lani

?fl;
Pr[Z1 = Xni]

Yni

1cdw(ewniw + fwni(M-111))
w=0

Y,

Pr[Yi= Xnil On] (Xni) +Pr[Yi=M-Xnile](M-Xni)

=1 Pr[Z = Xni]

-(C

-EPr[Yi=wlen](w) + Pr[Yi=M-wie](M-w))1
w=o

=I(E[YJen Xi] E[Yilen]),
a=1

where:

(10)

an = exp[ ] , (11)
j=o

b = exp[X (en si )] , (12)

cn = exp[(M-Xn1) (On 6i)] , (13)

dw= exp[ E Uwi ] , (14)

ewn1 = exp[w(en -Si )] (15)

fwni = exp[(M-w)(On )] (16)

and



Yni=E dw(ewn, fw )
w=0

The Graded Unfolding Model 15

(17)

Note that in equation 10, E[Yi 6 ] is the expectation of the nth individual's subjective response

to item i, and E[Yi 16 , X,] is the conditional expectation of the nth individual's subjective

response given that individual's observed response. Similarly, the partial derivatives with respect

to 5i and t are:

alia) (E[Y,1 er x, E[yi )
as, n=1

and

ain
N Ip
E En=1 1=1

Edw (-Uwi)(6. + fwni)

U +
w =0

x
n

N I
=- E ux,j > (Uw;)Pr[Zi = w]) .

n=1 i=1 w=0

The second order partial derivatives of the log-likelihood equation are equal to:

(18)

(19)
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( 1(bni+ cni)(bniXni+ cni(MXn1 )2) (bniXni + cn1(MXn )2

(b + cni )2

C

(E dw (ew n i w2 + fw n (M-102 )) Y (E dw (e w n iw +.1-wni(Mw)))2
w=0 w=0

2 (20)
Y n

=i [ (E[e I en , xni E[Y, I en , x, j2) (E[Y, ] I en i2 )1
i=i

I

=E
2 2

Yi I On ,X, Yi I On ,
i=1

a2111(L) xl--l 2 2

as7 n 1
cir le

n
,x °Y, I en

=

and

2 C
a21n(L)

Uwe Pr[Zi = W]) E u,,Pr[Zi = 34]11,
n=1 1=1 w=0 w=0

(21)

(22)

where:

E[ Yi2 en ] = the expectation of an individual's squared subjective response to item i,

E[ yi2 I en, X ] = the conditional expectation of an individual's squared subjective response to

item i given the individual's observable response,

02 en = the variance of an individual's subjective response to item i,

and

19
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02Y, 0 , Xn = the conditional variance of an individual's subjective response to item i given the

individual's observable response to item/.

Local Maxima of the Log-Likelihood Function

The log-likelihood function of the GUM with respect to either persons or items need not be

single peaked. In practice, we have found that when the log-likelihood function contains local

maxima with respect to Si, then these maxima are usually located relatively far from the point

where the global maximum is attained. Furthermore, analyses of both simulated and real data

have indicated that the values of the log-likelihood function at these local maxima are usually

much smaller than the global maximum value. Under these circumstances, the Newton-Raphson

algorithm appears to perform adequately provided that judicious initial values for Si areused. (A

strategy for developing initial estimates is described in Appendix A.)

Our past experience with the model has shown that when local maxima occur in the log-

likelihood function with respect to en, then they may occur at points on the latent continuum

which are relatively close to the location of the global maximum. Moreover, the value of the log-

likelihood function at these local maxima can be quite similar to the global maximum value. In

these situations, the Newton-Raphson procedure often falters. Therefore, the maximization

algorithm for person parameters includes a grid search that is conducted at various points in the

Newton-Raphson process in an effort to prevent locally optimal solutions (see Roberts, 1995).

Extreme Response Patterns

The joint maximum likelihood procedure will yield infinite attitude estimates for individuals

who consistently use the most extreme disagree category (i.e., for individuals who receive a score

of 0 on each item). Moreover, this extreme response pattern contains no information about the
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direction of the individual's attitude. For example, an individual with this response pattern may

possess an attitude that is extremely negative or extremely positive relative to the items under

consideration. For these reasons, individuals who exhibit this extreme response pattern must be

discarded from the estimation process. Additionally, experience has shown that erratic attitude

estimates may arise in cases where an individual has not endorsed any item to at least a slight

extent. Therefore, those individuals who fail to use any response categories that reflect agreement

are also discarded from the estimation procedure.

Standard Errors of GUM Parameter Estimates

Approximate standard errors of the GUM parameters can be derived from the

second order partial derivatives of the log-likelihood function. For example, if item parameters

are treated as known, then approximate standard errors for attitude estimates can be computed as

follows:

°O n

{32 ln(L) 1112
ae2n

I C
[(-E E Pr[Zi =z] (5n i

i =1 z=0

+ En Z 2 + En (MZ)2 ) ( Z + i(MZ))2

jni )2

(E dw (ew n; W 2 4-fwn, 01w? Dyni (E dw (ew n i(lVf-w)))2
w=o w=0

Yn

I C

1

1

2
= E E [pr[zi=z]on,,,,z -(y2yi, 2

i= 1 z =0

(23)
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where:

bnJ= exp[z(On -Si)],

"on = exp[(M z) (On Si)]

and

62y, e z = the conditional variance of an individual's subjective response given that Z, = z.
,

Note that nn(L)/a0,72 involves observed data, and thus, the expected values of these terms are

obtained numerically (i.e., calculated over z = 0, 1, C) in equation 23. Furthermore, the

nominal values of O. in this equation will necessarily be replaced by estimated O. values in

practice.

The standard errors in equation 23 will generally be too small because the uncertainty in item

parameter estimates is ignored. However, simulation results suggest that the degree of

underestimation will be minor in many attitude measurement situations. These results will be

described more fully in a subsequent section.

Insert Figure 4 About Here

The standard error of a en estimate based on a single individual's response to a single item is

plotted in Figure 4. The plot is based on a hypothetical item with six response categories under

the assumption that successive ti values are equally distant from each other. Each curve in Figure

4 corresponds to an alternative value of 4r, where p is the distance between successive thresholds.

The function is symmetric about the origin, and it becomes infinitely large whenever 10. - 8; I is

equal to 0 or is infinitely large itself. The global minimum of the function increases as lir increases,

and the points (or intervals) on the en - Si axis at which this minimum occurs grow more distant
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from the origin. Moreover, the range of lOn - 8; I values which yield standard errors near the

global minimum gets larger as it increases. Thus, standard errors become larger, yet more stable,

as increases.

Approximate variances and covariances of item parameter estimates can be obtained by

treating person parameters as known. The approximations are given by matrix E where:

(24)

Matrix E is an (I + C) x (I + C) matrix of variances and covariances formed by juxtaposing four

submatrices. Standard errors of item parameters are obtained by taking the square roots of the

diagonal elements of E. Submatrix E6 6 is an I x I diagonal matrix where the ith diagonal element

is given by:

{a2 ln(L)1

as,,

+1E1 [Pr[Zi = z
n=1 z=0

] G2Ya I en ,z

(25)

The expectation in equation 25 is derived numerically across all possible values of z. Submatrix

Et t is a C x C symmetric matrix in which the (jj ) element is given by:

a2111(L) I

at at
I

N I C

=E E E {Uzi Pr[Z1 = z]
n=1 i=1 z=0 ( v=0

vj

(26)
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where Uzj, Uz, and U i, are dummy variables which are equal to 1 whenever z <j, z < j /or

v < j respectively, and are otherwise equal to zero. No expectation is required in equation 26

because it contains no observed data. Submatrix EaT is an I x C matrix in which the (i, j) element

is equal to:

a2110) I
as, ar,

N C
=E-E u

where:

az[Zgni+W-Zrani]
n1 Yni

N C az [ z of-z) en 3

zO Yn i

Pr[Zi = z] ("O
1

dw(wewni+ (Ad W) fw i)

Pr[Zi = z] ( g Y ,I On ])

C

UziPr[Zi= Z](E[Yilen,Z] E[Yilen]),
n1 z -O

= exp [ E zj
j=0

Yn i (27)

and

E[ Y, I en, z = the conditional expectation of an individual's subjective response to

item i given an observable response of z.

Equation 27 contains no observed data, and thus, no expectation is required. The fourth and final

submatrix, Cra, is simply the transpose of submatrix Ea . Note that the nominal item parameter

values given in equations 25 through 27 are necessarily replaced by parameter estimates in

practice.

The variances and covariances defined by equation 24 will generally be too small because the

uncertainty in person estimates is ignored. Nonetheless, simulation results suggest that the
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approximations will often be adequate, and their accuracy will be discussed later in this report.

Recovery of Simulated Parameters

Method

The recovery of GUM parameters by means of the joint maximum likelihood technique was

simulated under 30 alternative conditions. Conditions were derived by factorially combining five

levels of sample size with six levels of test length. The number of subjects analyzed in these

conditions was either 100, 200, 500, 1000 or 2000, and responses to either 5, 10, 15, 20, 25 or 30

attitude items were generated. Items were always located at equally distant positions on the

latent continuum and always ranged from -4.25 to 4.25, regardless of the number of items

studied. The person parameter estimates in each condition were randomly sampled from a

normal distribution with p=0 and 0=2.0. The threshold parameters were equally distant, and the

interthreshold distance was fixed at .4. The characteristics of the nominal item and person

parameters used in this simulation were similar to those used in previous studies of estimation

accuracy with unfolding IRT models (Andrich, 1988; Andrich & Luo, 1993). The observable

response simulated for each person-item combination was on a 6-point scale (e.g., "strongly

disagree", "disagree", "slightly disagree", "slightly agree", "agree" and "strongly agree"). Six

response probabilities were computed with equation 4 and subsequently used to divide a

probability interval (i.e., a closed interval between 0 and 1) into 6 mutually exclusive and

exhaustive segments, where each segment corresponded to a particular observable response

category. A random number was then generated from a uniform probability distribution, and the

simulated response was that response associated with the probability segment in which the
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random number fell. After an observable response to each item had been generated for all

subjects, the data were used to estimate GUM parameters. The process of generating data and

subsequently estimating parameters was replicated 30 times in each condition, and the nominal

values of all parameters remained constant across replications.

Measures of Estimation Accuracy

Four measures of estimation accuracy were investigated, and each measure had previously

been used in at least one study of accuracy in IRT parameter estimation (e.g., Andrich, 1988;

Andrich & Luo, 1993; Hulin, Lissak & Drasgow, 1982; Kim, Cohen, Baker, Subkoviak &

Leonard, 1994; Seong, 1990; Yen, 1987). The Root Mean Squared Error (RMSE) was the first

of these measures. The RMSE provided an index of the average unsigned discrepancy between a

set of nominal parameters and a corresponding set of estimates. The RMSE was calculated

across all the parameters of a given type in any single replication. For example, the RMSE of

attitude location estimates from a particular replication was computed as:

RMSE-
N

N

E On 6)2
n =1

where:

(28)

en= the nominal attitude location for the nth subject,

On= the estimated attitude location for the nth subject,

and

N= the number of subjects in the sample.

Similar quantities were computed for the item location parameters and the threshold parameters in
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a given replication. The RMSE for On estimates can be algebraically decomposed to show that:

RMSE =. INF + Se 2(see) xe)2 , (29)

where:

2S = the sample variance of the N estimated 6 values,

4 = the sample variance of the N nominal 6 values,

See = the sample covariance between the estimated and nominal 6 values,

Xe = the average of the N estimated 6 values,

and

Xe = the average of the N nominal 6 values.'

The RMSE for 8; and estimates can be decomposed in an analogous fashion. Equation 29

illustrates that the RMSE is sensitive to three types of discrepancies between the nominal and

estimated parameter distributions. First, it depends on the degree of covariation between nominal

and estimated parameter distributions. Relatively large RMSE values are expected when the

linear relationship between estimated and nominal parameters is weak. Second, the RMSE

depends on the degree to which the variance of the estimated parameter distribution matches that

for the nominal distribution. It will increase as the variances of the two distributions become

more discrepant. Lastly, the RMSE depends on the extent to which the mean of the estimated

parameter distribution matches that for the nominal parameter distribution. It will increase as the

absolute difference between the two means grows larger.

The terms "sample variance" and "sample covariance" are used to designate the biased
forms of these statistics where N is used in the denominator rather than N-1.
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The remaining accuracy measures were used to individually evaluate the three discrepancies

assessed by the RMSE. For example, a Pearson correlation between estimated and nominal

parameters was computed on each replication in order to index the degree of covariation between

distributions. Similarly, the ratio of estimated parameter sample variance to nominal parameter

sample variance was calculated to determine how well the variances of the two distributions

matched. Lastly, the mean difference between estimated and nominal parameters was computed,

and the absolute value of this mean difference was used as an estimate of the location difference

between the_two distributions.

Measures of Bias

In addition to the measures of accuracy described above, four measures of statistical bias were

examined. The first of these measures, the Root Mean Square Bias (RMSB), provided a global

measure of bias across all parameters of a given type. The RMSB for 0,, estimates was defined

as:

RMSB

where:

i (E[en ] 0)2
n=1

N (30)

=1/S2 - + Sa 2(S - + (X y 2
gen] ,, genie, ,_E[k] ...0)

E[6n] = the expected value of O for the nth individual,

Sge] = the sample variance of E[6n] over the N individuals,
n
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SEN- O
= the sample covariance between the expected and nominal 6 values over the N

individuals,

and

XEloni = the average of E[on] over the N individuals.

Analogous quantities were defined for the 8; and -c; estimates. The RMSB could not be calculated

directly because the expected values of parameter estimates were unknown. Instead, it was

approximated from the simulation data across the 30 replications in each cell of the design. For

example, the_values for XErens, S
P- .] '

and SE/onie were approximated as follows:

N

Lien
n=1

N

2S j e

2
z ST:

SE[en]

Xein,

2
N S -

en
n=1 R

,
N

and

SE[k] e z 48

where:

(31)

(32)

(33)

On= the average 0 estimate for the nth individual where the average is calculated across

the R replications of the simulation,

X-
e

= the average of On across the N individuals,
n

2 -7
S,

e
= the sample variance of On across the N individuals,
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2so n= the (unbiased) empirical estimate of the population error variance of On calculated

across the R replications of the simulation [i.e., se = E (6,7 (R -1) 1
r=1

Sbro = the sample covariance between 0,, and en across the N individuals.

Similar approximations were developed for the Si and tj parameters.

Like the RMSE, the RMSB is sensitive to three forms of discrepancy between nominal and

expected parameter distributions. It will be larger to the extent that the two distributions are not

perfectly correlated, have different variances or have different means. Consequently, three

additional bias measures were constructed in an effort to diagnose these particular discrepancies.

For example, the correlation between expected and nominal On distributions was approximated by:

SS[en]

rEleni S SSe Lieni

Se e

Se
51-.?

2N S
pe

n=1 it

(34)

Equation 34 represents the correlation between en and e after correcting for measurement error

in 0,, and is, therefore, referred to as the "corrected correlation". Similarly, the variance

difference between nominal and expected 0 distributions was indexed by the "corrected variance

ratio" :

S2
EiOn]

S2

(35)
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Finally, the corrected absolute mean difference between expected and nominal On distributions

was approximated by:

5C.sioni Xe I = Xe Xe 1

The corrected correlation, corrected variance ratio and corrected absolute mean difference were

computed for the öi and ti parameters in an analogous fashion.

Results

Accuracy of en Estimates. Figure 5 portrays the four accuracy measures associated with the

On estimates _derived from the GUM. Each panel in Figure 5 presents the mean value of a different

accuracy measure as a function of the number of subjects and number of items simulated in a

given condition. All means were based on the 30 replications within a condition. The re values

shown at the top of each panel were calculated from a 6x5 between-subjects ANOVA in which

the given accuracy measure served as the dependent variable and the number of items and the

number of subjects served as the independent variables. These values indicate the proportion of

the corrected total sum of squares that was attributed to the main effect of items (1f), the main

effect of subjects (1'12s), or the interaction of items and subjects

Insert Figure 5 About Here

(rn.$).

The average RMSE obtained under the different simulation conditions is shown in the upper

left panel of Figure 5. The associated pattern of T12 values indicated that the RMSE was almost

totally determined by the number of items used to derive the On estimates. The RMSE dropped

dramatically as the number of items was increased from 5 to 10, and it dropped again when the

number of items was increased to 15, albeit less substantially. There was little decrease in the
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RMSE when the number of items was increased beyond 20, at which point, the average RMSE

was equal to .313.

The upper right panel of Figure 5 shows the average correlation between nominal and

estimated On values obtained under alternative simulation conditions. These average correlations

were greater than .959 in every condition, and thus, the estimated On values were practically a

linear function of nominal parameter values. Additionally, the small amount of variability that

emerged in these average correlations was almost entirely a function of the number of items used

to derive On _estimates. The size of the average correlation grew slightly as the number of items

was increased to 20, at which point, the average correlation was equal to .992. Further increases

in the number of items had little impact on the average correlation between estimated and nominal

values.

The lower left panel Figure 5 portrays the average absolute mean difference between the

estimated and nominal On distributions for each condition. This measure was influenced by the

number of items studied, the number of subjects sampled, and the interaction of these two factors.

However, when 15 or more items were used to calculate On estimates, then the average absolute

mean difference between nominal and estimated distributions was always less than .03, regardless

of the number of subjects studied. Moreover, this difference was generally insensitive to further

increases in the number of items used.

The lower right panel of Figure 5 portrays the average variance ratio obtained in each

condition. The fact that these average ratios were always greater than 1.0 indicated that the

variance of the en estimates was consistently larger than the variance of the nominal parameters.

Moreover, the variance ratio was almost totally a function of the number of items used. The
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variance ratio decreased as the number of items increased to 20, after which, further increases in

the number of items led to only slight changes. The average variance ratio observed when 20

items were used to derive O. estimates was equal to 1.178.

Accuracy of 8 Estimates. The accuracy measures for 8; estimates are shown in Figure 6. The

RMSE and variance ratio measures were both primarily determined by the number of items

studied and these measures showed only small decreases when the number of items was increased

beyond 20. The average value of the RMSE was equal to .217 when 20 items were studied, and

the average variance ratio was equal to 1.164. The average correlation between nominal and

estimated 8; parameters was consistently near 1.0 in every condition studied.

Although the number of subjects had negligible impact on the accuracy of the 8; estimates

(relative to the impact of the number of items), the effects of subjects were in the expected

direction. Specifically, the average RMSE and variance ratio generally decreased as the number

of subjects increased.

Insert Figure 6 About Here

Accuracy of ri Estimates. Figure 7 portrays the accuracy measures for the ti estimates derived

from the GUM. The RMSE, variance ratio and absolute mean difference measures were all

primarily a function of the number of items studied. Moreover, the values of these accuracy

measures consistently decreased as the number of items was increased to 20, after which further

increases in the number of items had little impact. When 20 items were utilized, the average

RMSE was equal to .143, the average absolute mean difference was equal to .111, and the

average variance ratio was equal to 1.262. Again, the relatively small effect of sample size was in
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the expected direction. The three accuracy measures generally improved as the sample size

increased.

Insert Figure 7 About Here

The average correlation between estimated and nominal t values was quite high in every

condition (i.e., above .983), but the small amount of variance that did emerge in these average

correlations was due to both the number of items studied and the number of subjects sampled.

When the number of subjects was 1000 or more, then the average correlation increased slightly as

the number of items approached 10, but further increases in the number of items had little effect

on the size of these correlations. With smaller samples, the correlations continued to increase

slightly as the number of items reached 20 to 25.

Bias in Parameter Estimates. The four measures of bias are plotted for the O, Si, and t;

estimates in Figures 8 through 10, respectively. The behavior of these four measures was very

similar to that exhibited by the measures of accuracy, and therefore, only the most salient features

will be noted here. The RMSB values indicated that the parameter estimates were generally

biased, but that the degree of bias decreased as the test length increased. The reduction in bias

was quite noticeable until the test reached 20 items in length, beyond which, further decreases

were small but steady. With 20 calibrated items, the average RMSB was equal to .150, .201 and

.129 for the O, 8; and ti parameters, respectively. There was also a very small main effect of

sample size such that the RMSB decreased slightly as the sample grew to 500 subjects. Further

increases in sample size led to negligible changes in RMSB.
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Insert Figures 8 through 10 About Here

The corrected correlation was extremely high for all parameters in every condition studied.

The correlation never fell below .988, and it was consistently above .999 when 15 or more items

were calibrated. Therefore, the bias in parameter estimates was not due to a suboptimal

correlation between expected values and nominal parameters.

The corrected variance ratio was consistently greater than 1.0 in every condition studied. This

indicated that the unit of the expected parameter scale was inflated as compared to the nominal

parameter scale. The degree of scale inflation was determined primarily by the number of items

calibrated. The amount of inflation decreased moderately as the test length increased to 20 items,

after which, subsequent decreases were relatively small. The average corrected variance ratio

found with 20 items was equal to 1.154, 1.163 and 1.249 for the en, Si and s; parameters,

respectively. Like the RMSB, the corrected variance ratio was also slightly dependent on the

number of subjects sampled, and the mean ratio decreased as the number of subjects grew to 500.

Further increases in sample size led to negligible effects.

The corrected absolute mean difference for 0 parameters was generally small, and it was

consistently less than .016 whenever the number of items calibrated was 15 or greater.

Therefore, differences in the locations of expected and nominal en distributions contributed little

to the bias depicted by the RMSB. In contrast, the corrected absolute mean difference for ti

parameters was much larger and decreased steadily as the test length increased. Consequently, its

behavior resembled that for the corrected variance ratio. This result was not surprising because

scale inflation will typically be reflected by both the corrected absolute mean difference and the

35
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corrected variance ratio associated with 'Li parameters.'

Accuracy of Standard Error Approximations. The model-based standard errors obtained from

equations 23 and 24 are simple approximations and will generally be too small. The degree of

underestimation inherent in these approximations was assessed by comparing them to the

corresponding empirical standard errors (i.e., so, s8 and st ) calculated from the simulation data.

Model-based standard errors were derived by substituting nominal parameter values into

equations 23 and 24. The ratio of model-based standard error to empirical standard error was

computed for each parameter and then averaged over all parameters of a given type. The mean

difference between model-based and empirical standard errors was also calculated for each set of

parameters.

Insert Figure 11 About Here

Figure 11 portrays the results of the standard error comparisons. The panels on the left side of

Figure .11 portray the mean ratio of standard errors for each parameter type as a function of the

number of items and the number of subjects studied. The underestimation inherent in equations

23 and 24 was quite clear. The mean ratio was always less than 1 in every condition studied, and

'Recall that only those thresholds associated with the first C subjective response
categories are estimated in the GUM. The remaining M-C thresholds are constrained by the
symmetry assumption. Therefore, the C nominal cc parameters will not generally have a mean of
0. If the underlying continuum is inflated by some constant factor c, where c > 1, then the ti
parameters will be multiplied by that same factor. Consequently, the mean of the ti, distribution
will increase by a factor of c and the variance will increase by a factor of c2 . In contrast, the
GUM constrains the 8; distribution to have a mean of 0, and therefore, inflation of the underlying
continuum cannot affect the mean of the 8; distribution. Similarly, when nominal O, values are
sampled from a N(0,a) distribution, then scale inflation cannot change the expected value of that
distribution.

36
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it was often substantially less. However, the approximation generally improved as the number of

test items grew larger, although this improvement was less consistent for ti parameters. With 20

test items, the average standard error ratio was equal to .894, .709 and .788 for the en, 81, and ti

parameters, respectively. The mean standard error ratio for en estimates was also influenced by

the number of subjects studied, and it typically grew larger as the number of subjects increased.

The panels on the right side of Figure 11 display the mean difference between model-based and

empirical standard errors as a function of the number of items and subjects under study. Although

the underestimation of standard errors was often substantial in a relative sense, it was generally

small in a absolute sense. For example, when 20 items were studied, the average difference in

standard errors was equal to -.029, -.028 and -.015 for the On, 8i, and tj parameters, respectively.

When taken together, these results suggest that estimates calculated from equations 23 and 24

will provide rough approximations to the true standard errors. Although other complex estimates

might be more accurate (see Lord & Wingersky, 1985), these simple estimates exhibit little

absolute error when tests of 20 or more items are administered to samples of 100 or more

subjects. Such small inaccuracies are unlikely to make much difference in traditional attitude

measurement situations.

Discussion

From a statistical perspective, the simulation results indicated that joint maximum likelihood

(JML) estimates of GUM parameters will generally be biased. This finding was not surprising

given the bias previously seen in JML estimates from other MT models (Anderson, 1973; Jansen,

van den Wollenberg & Wierda, 1988; Swaminathan & Gifford, 1983; van den Wollenberg,

Wierda & Jansen, 1988; Wright & Douglas, 1977). In general, the degree of bias in GUM
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estimates was inversely related to both test length and sample size, although the effects of sample

size were very minor. This pattern of results suggested that JML estimates of GUM parameters

may be asymptotically unbiased (i.e., consistent) as both the number of items and the number of

subjects become large.

Interestingly, the bias in JML estimates manifested itself primarily in the unit of the resulting

scale such that more bias led to an inflated unit of measurement. Such behavior implies that a bias

correction factor could potentially be developed. Any correction factor would obviously be

related to the number of items calibrated, but the role of other factors such as the number of

response categories and the relative locations of items and examinees would also need to be

evaluated.

From an applied perspective, the simulation results indicated that the JML algorithm can yield

reasonably accurate estimates of GUM parameters with feasible data demands. The correlation

between estimated and nominal parameters was always extremely high in every condition studied.

Additionally, the inaccuracies observed in the JML estimates became quite small when the number

of items studied approached 20, and this finding was generally independent of the number of

subjects utilized. This does not mean that the number of subjects had no effect on parameter

estimates. On the contrary, the accuracy of item parameter estimates typically increased as the

number of subjects increased. However, the effects of sample size on accuracy were extremely

small relative to the effects of test length, at least within the range of sample sizes studied here.

Therefore, these results suggest that reasonably accurate estimates of GUM parameters can be

obtained in many practical attitude measurement situations where the attitude questionnaire is

based on as few as 15 to 20 6-category items and the number of subjects is 100 or more.
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An Example With Real Data

Graded responses to Thurstone's (1932) attitude toward capital punishment scale were

obtained from 245 University of South Carolina undergraduates. The 24 statements from the

scale were presented randomly to each subject by means of a personal computer. Subjects

responded to each statement using one of six response categories (i.e., "strongly disagree",

"disagree", " slightly disagree", "slightly agree", "agree" and "strongly agree"). The empirical

item characteristic curve associated with each attitude statement is given in Appendix B.

Dimensionality

Davison (1977) has shown that when graded responses follow a simple metric unfolding

model, then the principal components of the interitem correlation matrix will suggest two primary

dimensions and the component loadings will form a simplex pattern. Simulations of the GUM

have suggested that the structure of the interitem correlation matrix will be similar when the

model holds perfectly. (The component loadings will form a simplex-like structure, but the

endpoints of the simplex will be folded inward.) Therefore, a principal components analysis of the

interitem correlation matrix was conducted in an effort to identify those items that were least

likely to conform to the unidimensionality assumption of the GUM. Conformability was

operationally defined in terms of the item-level communality estimates derived from the first two

principal components. Specifically, an item was discarded if less than 30 percent of its variation

was determined from a two-component solution. This criterion, although somewhat arbitrary,

appeared to be reasonable based on previous simulations. Seven items were discarded due to this

requirement (i.e., statements 7, 11, 13, 17, 18, 20, and 22 from Appendix B). Responses to three

of these items (statements 11, 13 and 20) appeared to be relatively independent of attitude toward
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capital punishment. Responses to the other four statements were more or less consistent with the

general hypothesis of an ideal point response process, but the variation in these responses was not

adequately described by the first two principal components.

Eliminating the Most Ill-fitting Items from the Final Scale

After an initial calibration of model estimates was obtained, the most ill-fitting items were

identified on the basis of two criteria. First, Wright and Masters' (1982) item fit t statistic (i.e.,

the infit statistic) was computed for each item. This statistic indexes the degree to which item-

level responses fail to conform to the model. Wright and Masters claim that the item fit t statistic

follows a standard t-distribution when applied to data that conform to a cumulative model.

However, the distribution of the statistic under the GUM is not known. Therefore, this statistic

was used as a heuristic to identify the most ill-fitting items. The second criterion used to identify

deviant items was based on the degree to which an item's location on the attitude continuum

appeared inconsistent with its content. Although this type of evaluation was obviously subjective,

only those items with clearly questionable locations were removed. Together, these two

heuristics led to the removal of 5 items (i.e.,statements 1, 5, 8, 15 and 16 from Appendix B). The

characteristics of these items were consistent with the general hypothesis of an ideal point

response process, yet their fit to the GUM (i.e., a specific model of that process) was

questionable. The removal of these items left 12 items for the final calibration of model

parameters.

Item Location Estimates

The item location estimates for the 12 selected items are shown in Table 1 along with their

approximate standard errors. Items have been ordered on the basis of their location estimates,
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and the sentiment expressed by each item is consistent with this same ordering. The consistency

observed between item sentiment and item location provides an intuitive check on the adequacy of

the model.

Insert Table 1 About Here

There was a pronounced gap between the estimated locations of statements 8 and 9. This was

presumably due to a lack of items in the initial statement pool that reflected these intermediate

opinions. Ordinarily, a test developer would attempt to calibrate a much larger set of items and

then choose a subset of items from the final calibration that represented alternative regions of the

latent continuum in a fairly uniform manner.

Attitude Estimates

The distribution of individual attitude estimates is shown in Figure 12. The mean attitude

estimate was equal to 1.229 with a standard deviation of 1.204. The median attitude estimate of

1.286 fell between the statements "I do not believe in capital punishment, but it is not practically

advisable to abolish it" and "We must have capital punishment for some crimes." Thus, these

subjects begrudgingly supported capital punishment to at least some extent.

Insert Figure 12 About Here

Subjective Response Category Threshold Estimates

Figure 13 illustrates the subjective response category probability curves that were estimated

with the GUM. In Figure 13, the locations of estimated subjective category thresholds are

indicated by vertical lines. The thresholds were successively ordered and formed a series of
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intervals on the latent continuum in which a particular subjective response was most likely. The

intervals associated with a strongly agree response (from either below or above) were relatively

wider than those for the remaining subjective responses. However, this result may have been due

to the fact that a majority of individuals were located within the gap on the latent continuum

bordered by items 8 and 9, and consequently, there was less information about the exact width of

the strongly agree intervals.

Insert Figure 13 About Here

Global Model Fit

Although model fit statistics have not yet been developed for the GUM, a descriptive analysis

was conducted to gain an intuitive understanding of the global model fit to the capital punishment

data. In this analysis, the difference between each individual's attitude estimate and each

estimated item location (i.e., On- S1) was calculated. These differences were then sorted and

divided into 70 homogeneous groups of equal size (n=42). The GUM expected values and the

observed scores were both averaged across the individual-item pairs within each homogenous

group. In this way, much of the random variation was averaged out of the observed scores. A

strong linear relationship emerged between average observed scores and the average expected

values as evidenced by a correlation of .993. Thus, the GUM fit these data reasonably well.

Insert Figure 14 About Here

Figure 14 arrays the average expected values and average observed scores as a function of the

mean On- 8, value within each homogenous group. The average observed scores are given by
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squares whereas the average expected values are represented by the curve. As seen in the plot,

the GUM arranged both individuals and items on the attitude continuum so that the average

expected value and the average observed score both increased as the mean difference between

individual and item locations approached zero. Furthermore, the fit of the GUM appeared

reasonable throughout the range of attitudes exhibited in the sample.

Insert Figure 15 About Here

As an additional check on the adequacy of the model, the variance of observed scores within

each homogenous group was compared to the corresponding variance predicted by the model.

These variances are shown in Figure 15 as a function of the average On- 81 value within each

homogenous group. The observed variances are represented by squares and the model variances

are given by the solid curve. As shown in Figure 15, the observed score variances generally

mimicked the basic pattern exhibited by the model variances. This behavior led to a .715

correlation between observed score variances and model variances. Although the strength of this

relationship was less than that found with expected values, it was still substantial, and it suggested

that the GUM was a reasonable model for the capital punishment data.

Extensions and Future Research

Alternative Parameterizations of the GUM

Alternative versions of the GUM can be developed simply by reparameterizing the cumulative

model which forms the basis for the unfolding mechanism. For example, if one presumes that

subjective responses follow a partial credit model (Masters, 1982) rather than a rating scale



model, then a partial credit GUM (PC-GUM) can be derived as:

PrK i= x
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exp[x(6n-81) E t,, ]+exp[(Mx)(0,7-81) E
j=0 j=0

C w w

E [ exp[w(On-61) > T./1 +exp[(M-w)(On-81) E T./a
w=0 .fro

(36)

where are subjective response category thresholds that are allowed to vary across items and the

remaining terms are defined as in equation 4. This model is appropriate if the scale associated

with subjective responses varies across items.

An alternative GUM can be developed by constraining threshold parameters from an

underlying rating scale model. Specifically, if one assumes that successive subjective response

category thresholds are equally distant from each other, then subjective responses can be modeled

with Andrich's (1982) "constant unit" version of the rating scale model. This would give rise to

a constant unit GUM (CU-GUM):

exp[x(M-x)X + x(en-8,)] + exp[x(M-x)X + (M-x)(13n-o,)]
PrK i= x

[exp[w(M-w)X + w(0,7-6,)] + exp[w(M-w)X + (M-w)(0,7-8,)]]
(37)

where X is a "unit" parameter that is equal to half the distance between successive thresholds and

the remaining terms are defined as in equation 4. At a conceptual level, this model is appropriate

if subjective responses to attitude items are on an equal interval scale. A similar assumption is

that subjective responses are on an equal interval scale, but the scale unit changes with each item.

In this case, the subjective responses could be modeled with Andrich's (1982) "multiple unit"

version of the rating scale model. This would yield a multiple unit GUM (MU-GUM):



Pr[X i= x ]

w=o
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exp[x(M-x)Ai + x(en-Si)] + exp[x(M-x)A., + (M-x)(0,7-8,)]

[exp[w(M-w)?,; + w(0,7-6,)] + exp[w(M-w)A1 + (M-w)(6 n-8 i)]]
(38)

where Ai is a unit parameter that is allowed to vary across items.

Another useful GUM can be derived from Muraki's (1992) generalized rating scale model.

The resulting model, referred to as the generalized GUM (G-GUM), includes a discrimination

parameter that varies across items:

Pr[Xn i= x ]-
exp[oci ( x(13,7-81) t ti. 14-exp[cci ( (M-x)(0n-81) E ti. 1

j=0 j=0
, (39)

exp[ai ( w(On-81) T./ ai (M-w)(0n-81) T
w=o

)
J=0 J=0

where ai is the discrimination parameter for the ith item. This model is interesting because it

allows for item-level trace lines that vary in their peakedness and dispersion while maintaining a

constant set of subjective response category thresholds across items. In this regard, the G-GUM

is conceptually similar to Thurstone's successive intervals procedure (Safir, 1937) for scaling

attitude items in which the standard deviations of item scale value distributions are allowed to

differ, but the response category boundaries remain fixed. However, the two models differ in that

the successive intervals procedure posits a cumulative response mechanism whereas the G-GUM

is based on an unfolding model.

Roberts (1995) investigated the ability to recover parameters from the CU-GUM and MU-
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GUM using a joint maximum likelihood procedure analogous to that described in this paper. His

results paralleled those reported here for the GUM. Specifically, he found that reasonably

accurate estimates of all model parameters could be obtained with as few as 15 to 20 6-category

items and as little as 100 subjects. An investigation of parameter recovery in the PC-GUM is

currently underway, and preliminary results suggest that relatively large samples (e.g., 1000

subjects or more) are required to produce accurate measures of item-level thresholds. An

investigation of parameter estimation for the G-GUM is planned for the near future.

Alternative -Methods of Parameter Estimation

As noted above, the joint maximum likelihood procedure can yield reasonably accurate

estimates of GUM parameters with minimal data demands. However, the method is

computationally intensive, and the statistical consistency of the resulting estimates is generally

questionable. Consequently, we have recently begun to explore estimation of GUM parameters

with a marginal maximum likelihood procedure (Bock & Aitkin, 1981; Bock and Lieberman,

1970; Muraki, 1992). Preliminary results from this work appear promising and suggest that

marginal maximum likelihood estimates will be more computationally efficient and more

statistically sound than their joint maximum likelihood counterparts.

Summary

The GUM provides a means to simultaneously locate both items and persons on a

unidimensional latent attitude continuum. It does so using an unfolding mechanism, and thus, it

is consistent with Thurstone's (1928, 1931) view of the response process in attitude

measurement. Moreover, it can be used in situations where responses are binary or graded, so
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there is no need to dichotomize one's data, and lose potentially useful measurement information,

in order to use the procedure. GUM parameters can be estimated in a reasonably accurate

manner with relatively small data demands, and thus, the model should be applicable to a variety

of practical attitude measurement situations. Lastly, alternative versions of the GUM can be

easily adapted from a diverse set of cumulative IRT models which adds to the versatility of the

approach.
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Table 1

Scale Values for 12 Capital Punishment Statements from the Final Calibration

Statement 8, a8,

1) I do not believe in capital punishment under any circumstances. -1.859 .083

2) Capital punishment is absolutely never justified. -1.434 .071

3) Capital punishment is not necessary in modern civilization. -1.378 .069

4) We can't call ourselves civilized as long as we have capital -1.298 .068
punishment.

5) Execution of criminals is a disgrace to civilized society. -1.183 .065

6) Life imprisonment is more effective than capital punishment. -1.081 .064

7) I don't believe in capital punishment but I'm not sure it isn't -0.828 .061
necessary.

8) I do not believe in capital punishment but it is not practically -0.604 .059
advisable to abolish it.

9) We must have capital punishment for some crimes. 2.049 .064

10) Capital punishment is just and necessary. 2.448 .061

11) Capital punishment gives the criminal what he deserves. 2.463 .061

12) Capital punishment should be used more often than it is. 2.704 .061
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Figure Captions

Figure 1. Subjective response category probability curves for a hypothetical item under the

GUM. The item has 4 observable response categories which leads to 8 subjective response

categories. There is a probability curve corresponding to each of the subjective response

categories. Subjective response category thresholds are located at -1.3, -.7, -.3, 0, .3, .7 and 1.3.

Figure 2. Observed response category probability curves for a hypothetical item under the GUM.

There is a probability curve corresponding to each of the 4 observable response categories.

Figure 3. The expected value of an observable response to a hypothetical item under the GUM.

The item has 4 observable response categories which are scored from 0 to 3 where larger scores

are indicative of higher levels of agreement.

Figure 4. The standard error of a GUM attitude estimate (i.e., a 6 estimate) based on a single

individual's response to a single hypothetical item with 6 response categories. Each curve

corresponds to a different value oflir, where ijr is the distance between successive (equally spaced)

subjective response category thresholds.

Figure 5. Mean accuracy measures associated with en estimates from the GUM. Each mean is

based on 30 replications within a given condition defined by the number of items and the number

of subjects simulated. Each line, along with the associated symbol, corresponds to a given level

of subjects where *=100 subjects, 0=200 subjects, =500 subjects, 0 =1000 subjects and

=2000 subjects.

Figure 6. Mean accuracy measures associated with 8, estimates from the GUM. Each mean is

based on 30 replications within a given condition defined by the number of items and the number
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of subjects simulated. Each line, along with the associated symbol, corresponds to a given level

of subjects where *=100 subjects, 0=200 subjects, =500 subjects, 0 =1000 subjects and

=2000 subjects.

Figure 7. Mean accuracy measures associated with ti estimates from the GUM. Each mean is

based on 30 replications within a given condition defined by the number of items and the number

of subjects simulated. Each line, along with the associated symbol, corresponds to a given level

of subjects where *=100 subjects, 0=200 subjects, =500 subjects, 0 =1000 subjects and

=2000 subjects.

Figure 8. Bias measures associated with On estimates from the GUM. Each line, along with the

associated symbol, corresponds to a given level of subjects where *=100 subjects, 0=200

subjects, =500 subjects, 0 =1000 subjects and =2000 subjects.

Figure 9. Bias measures associated with Si estimates from the GUM. Each line, along with the

associated symbol, corresponds to a given level of subjects where *=100 subjects, 0=200

subjects, =500 subjects, 0 =1000 subjects and =2000 subjects.

Figure 10. Bias measures associated with t; estimates from the GUM. Each line, along with the

associated symbol, corresponds to a given level of subjects where *=100 subjects, 0=200

subjects, =500 subjects, 0 =1000 subjects and =2000 subjects.

Figure 11. Comparisons between model-based estimates and empirical estimates of standard

errors for GUM parameters. Comparisons have been averaged over all parameters of a given

type. Each line, along with the associated symbol, corresponds to a given level of subjects where

*=100 subjects, 0=200 subjects, =500 subjects, 0 =1000 subjects and =2000 subjects.
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Figure 12. Distribution of GUM attitude estimates (i.e., On estimates) derived from responses to

the 12 capital punishment items used in the final calibration.

Figure 13. Subjective response category probability curves derived from responses to the 12

capital punishment items used in the final calibration. The vertical lines indicate the locations of

the subjective response category thresholds.

Figure 14. The relationship between average observed item responses and average expected item

responses under the GUM portrayed as a function of 6 - 8,.

Figure 15. The relationship between observed score variance and variance predicted by the GUM

as a function of On - 8,.
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Appendix A

Developing Initial Parameter Values

Initial estimates of GUM parameters are derived most easily by first dichotomizing the graded

response data such that any level of agreement is scored as 1 and all other responses are scored as

0. The resulting binary scores lead to less cumbersome solutions for initial estimates, and these

simpler solutions provide adequate input to the algorithm. For binary scores, there is only one tj

parameter that must be estimated in the GUM, and we will denote this parameter as ;. The initial

estimate of; is obtained by first setting all On equal to 0, and then setting the 8; value of the most

frequently endorsed item to 0. Consequently, the estimate of ; must be large enough to account

for the proportion of endorsements observed for the most frequently endorsed item. Let v denote

the most frequently endorsed item, let s,, equal the number of endorsements observed for item v,

and let N equal the number of subjects in the sample. Presuming that item v is located at ov=0 and

all O=0, then the expected proportion of endorsements for item v is:

Pr[Xn, = 1]
exp(-Tb)+exp(-Tb) exp(-Tb)

exp(0) +exp(-Tb)+exp( tb) +exp(0) 1 +exp( tb)

Now, if we set the observed proportion of endorsements for item v equal to the expected

proportion, then an algebraic solution for ; can be obtained as follows:

(40)
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exp( -tb)

1 + exp(-Tb) N

(41)
Tb = -1nH.

This estimate of tb can be used to derive initial values for both 8; and T.6 For example, if we

maintain that all en are equal to zero and that the location of the item with the largest proportion

of endorsements is 8,=0, then the absolute values of the remaining item locations can be obtained

by solving the following equation with respect to 8; (i * v):

s.
Pr[Xi = 1] = 0

exp[-8, tb] + exp[-28, -tb] s,

exp[0] + exp[-81 tb] + exp[-28, tb] + exp[-38,] N

(42)

Equation 42 does not have a closed form and must be solved numerically for each Si. This is

easily accomplished using a bisection algorithm. The solutions derived from equation 42 are the

absolute values of the corresponding 8; estimates. The sign of each estimate is obtained from the

signs of the pattern loadings from the first principal component of the interitem correlation matrix

(calculated from graded responses). Davison (1977) has shown that these signs will correspond

to the direction of the item when responses exhibit an unfolding structure.

The estimate of ; can also be used to calculate initial values for tip. If one assumes that the

6 It seems practical to avoid extreme estimates of; when calculating initial values.
Therefore, 'Lb can be restricted to a reasonable range of possible values (e.g., -3.0 to -.5) simply by
rescaling the observed proportion of endorsements for each item so that equation 41 yields an
acceptable value. If this is done, then the same rescaled proportions should be used in equation
42.
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introduction of a graded response scale will simply decrease the interthreshold distance in a linear

fashion and that the distances between successive thresholds are equal, then the following initial

estimate of t is reasonable:

= (C + 1 bl k , (43)

where k is the number of observable response categories scored as 1 during the dichotomization

process.

Finally, an initial estimate of each en parameter can be obtained by considering those items that

a given individual has endorsed to at least some extent. A weighted average of the initial 8;

estimates associated with such items can be obtained using the graded response scores as the

weights, and this average provides a suitable initial estimate of O.
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Appendix B

Empirical item characteristic curves were developed for the 24 items from the capital

punishment questionnaire. The curves were generated using two distinct sets of data and without

any reliance on the GUM. The first set of data consisted of favorability ratings for each statement

obtained from an independent sample of 117 University of South Carolina undergraduates. The

ratings were on a 9-point scale with larger values indicating more favorable sentiment toward

capital punishment. The favorability ratings were averaged for each statement, and the resulting

averages served as rough estimates of statement locations on the latent attitude continuum. The

graded disagree-agree responses provided by the 245 subjects from the example constituted the

second set of data. These data were used to develop empirical attitude estimates. Each

subject's attitude estimate was derived by taking a weighted median of the locations associated

with those statements the subject endorsed to at least some extent. The median was weighted to

emphasize the level of agreement exhibited by the subject. "Strongly agree" responses were

weighted most heavily, followed by "agree" and "slightly agree" responses, respectively.'

The empirical attitude estimates were used to divide subjects into 15 relatively homogenous

attitude groups with each group containing 16 or 17 subjects. The average response to a given

item was then calculated within each attitude group. These data are portrayed in Figures B1

through B6. Each figure contains four item characteristic curves in which the average response

(ordinate) is portrayed as a function of the mean attitude score within the attitude group

(abscissa). The item content is listed above its characteristic curve along with its mean

7 The median was weighted by manipulating the frequency count of statement locations
within the distribution of endorsed statements. The frequencies were set equal to 3, 2, and 1 for
"strongly agree", "agree" and "slightly agree" statements, respectively.

77



The Graded Unfolding Model 59

favorability rating. The 24 items shown in Figures Bl-B6 have been ordered on the basis of their

mean favorability rating.

Insert Figures B1 -B6 About Here

The characteristic curves associated with items 11, 13 and 20 indicated that these items were

relatively independent of attitudes toward capital punishment. These items generally elicited

disagreement from all subjects regardless of their attitudes. In contrast, the characteristic curves

for the remaining 21 items were more or less consistent with the hypothesis that responses

resulted from an ideal point process. Statements that were clearly unfavorable with regard to

capital punishment (i.e., statements 1-10) exhibited response patterns that were negatively related

to attitude. Subjects with negative attitudes toward capital punishment endorsed these statements

to a higher degree than those with moderate or positive attitudes, respectively. Conversely, those

statements that expressed clearly positive sentiment (statements 19, 21-24) showed the opposite

response pattern. They were endorsed most by subjects with positive attitudes toward capital

punishment and were subscribed to less frequently by subjects with moderate or negative

attitudes. Most importantly, the statements which expressed more moderate positions toward

capital punishment (statements 12, 14-18) were endorsed most by individuals with relatively

moderate attitudes. Subjects with more extreme opinions, whether positive or negative, generally

endorsed these items less frequently.
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Additional Figure Captions For Appendix B

Figure B]. Empirical item characteristic curves for statements 1 through 4 of the capital

punishment scale.

Figure B2. Empirical item characteristic curves for statements 5 through 8 of the capital

punishment scale.

Figure B3. Empirical item characteristic curves for statements 9 through 12 of the capital

punishment scale.

Figure B4. Empirical item characteristic curves for statements 13 through 16 of the capital

punishment scale.

Figure B5. Empirical item characteristic curves for statements 17 through 20 of the capital

punishment scale.

Figure B6. Empirical item characteristic curves for statements 21 through 24 of the capital

punishment scale.
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Figure B4
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Figure B6
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